C++14

Unlike C++11, this is a minor release, focused mostly on improvements on top of C++11 changes, with very little that one could call “new”. C++14 feels a little more natural than C++11 by expanding the usage of features and implementing common sense additions that were missed in the original C++11 release. There were also quite a few bug fixes; several of these were backported into C++11 mode in compilers.

Also, while C++11 is always available in ROOT 6, C++14 requires a flag and compatible compiler, so C++14 features are often unavailable. The Conda-Forge ROOT package has C++17 enabled.

[Read More]

C++11

C++11 was the largest change ever made to C++; and due to the changed release schedule, probably will remain the largest single change. It is a well thought out, mostly backward-compatible change that can cause you to completely rethink the way you write code in C++. It is best thought of as almost a new language, a sort of (C++)++ language. There are too many changes to list here, and there are excellent resources available, so this is meant to just give you a taste of some of the most useful changes.

Many of the features work best together, or are related. There already are great resources for learning about C++11 (listed at the bottom of this lesson), and C++11 is already in use in most software. Therefore, the remainder of this lesson will cover a few of the common idioms in C++11 that a programmer experienced with the older C++ might not immediately think of.

[Read More]

GoogleTest and CMake

This is a quick recipe for setting up CMake to use googletest in your projects. First, make a tests folder in the root of your project. Then, add add_subdirectory(tests) to your CMakeLists.txt, after you’ve finished adding the libraries in your project. Note that the way I’ve written this probably requires CMake 3.4+.

[Read More]

A simple introduction to asyncio

This is a simple explanation of the asyncio module and new supporting language features in Python 3.5. Even though the new keywords async and await are new language constructs, they are mostly1 useless without an event loop, and that is supplied in the standard library as asyncio. Also, you need awaitable functions, which are only supplied by asyncio (or in the growing set of async libraries, like asyncssh, quamash etc.).

[Read More]

A little example of how asyncio works

This is a simple example to show how Asyncio works without using Asyncio itself, instead using a basic and poorly written event loop. This is only meant to give a flavor of what Asyncio does behind the curtains. I’m avoiding most details of the library design, like callbacks, just to keep this simple. Since this is written as an illustration, rather than real code, I’m going to dispense with trying to keep it 2.7 compatible.

[Read More]

Feynman Diagrams in Tikz

There is a package for making Feynman diagrams in LaTeX. Unfortunately, it is old and dvi latex only. If you are using pdflatex or lualatex, as you should be, it does not work. Even in regular LaTeX, it’s a bit of a pain. Why is there not a new package for pdflatex? Turns out, you don’t need one. Due to the powerful drawing library Tikz, you can create any diagram easily, and can customize it completely. For example:

Example diagram
[Read More]